

    
      
          
            
  
LIRC Python Package

[image: Python Version]
 [https://www.python.org/downloads/][image: Project Version]
 [https://pypi.org/project/lirc/][image: Documentation Status]
 [https://lirc.readthedocs.io/en/latest/?badge=latest][image: Build Status]
 [https://github.com/eugenetriguba/lirc/actions/][image: Code Coverage]
 [https://codecov.io/gh/eugenetriguba/lirc][image: Maintainability]
 [https://codeclimate.com/github/eugenetriguba/lirc/maintainability][image: Code Formatter]
 [https://github.com/psf/black][image: Contributing]
 [https://github.com/eugenetriguba/lirc/issues][image: License]
 [https://pypi.python.org/pypi/lirc/][image: Platform Support]
 [https://lirc.readthedocs.io/en/latest/installation.html]This is a python package that allows you to interact with the daemon in the
Linux Infrared Remote Control [https://lirc.org] package. By interacting
with this daemon, it allows you to programmatically send IR signals from a
computer.

This package is for emitting IR signals, but it does not support listening to
IR codes. If you’d like to monitor the IR signals you recieve on
Linux, which has built-in support in the kernel for recieving IR signals, you
can try using python-evdev [https://python-evdev.readthedocs.io/en/latest/].
They have a tutorial on reading the events [https://python-evdev.readthedocs.io/en/latest/tutorial.html#reading-events].

More information on the lircd daemon, socket interface,
reply packet format, etc. can be found at https://www.lirc.org/html/lircd.html


Maintainance Status

This project is maintained, but it is not actively developed.
It is feature complete for my purposes.



Installation

This package is hosted on PyPI and can be installed
through pip.

$ pip install lirc





However since this is a wrapper around the LIRC daemon, it
is expected that LIRC is installed and setup on the given
system as well.

More information on that can be found in the installation [https://lirc.readthedocs.io/en/latest/installation.html]
portion of the full documentation.



Quick Start


Using the Client

import lirc

client = lirc.Client()

print(client.version())
>>> '0.10.1'





To use this package, we instantiate a Client. By initializing it
with no arguments, the Client will attempt to connect to the lirc
daemon with the default connection parameters for your operating system.

These defaults depend on your operating system and can be looked up in the
full documentation if you need different parameters.

However, if you’ve instantiated the Client without any arguments,
you don’t get any errors, and you recieve a response from the version()
command, you are connected to the daemon. Most people should not need to
change the default parameters.



Customizing the Client

As previously stated, we can customize these defaults if needed.

import socket
import lirc

client = lirc.Client(
  connection=lirc.LircdConnection(
    address="/var/run/lirc/lircd",
    socket=socket.socket(socket.AF_UNIX, socket.SOCK_STREAM),
    timeout = 5.0
  )
)





For the client in the example above, we set it up using the defaults for a Linux machine.
While this example illustrates what is customizable, it is not a practical example since
you could call Client() with no arguments if you’re on Linux and achieve the same outcome.

See Overriding LIRC Defaults on Initialization [https://lirc.readthedocs.io/en/stable/usage.html#overriding-lirc-defaults-on-initialization]
for more information.



Sending IR

import lirc

client = lirc.Client()
client.send_once("my-remote-name", "KEY_POWER")

# Go to channel "33"
client.send_once("my-remote-name", "KEY_3", repeat_count=1)





With sending IR, we can use the send_once method and optionally,
send multiple by using the repeat_count keyword argument.



Handling Errors

import lirc

client = lirc.Client()

try:
    client.send_once('some-remote', 'key_power')
except lirc.exceptions.LircdCommandFailureError as error:
    print('Unable to send the power key!')
    print(error)  # Error has more info on what lircd sent back.





If the command was not successful, a LircdCommandFailureError
exception will be thrown.




Further Documentation

More information on how to setup the system installed LIRC, how to use
this python library, and a full API specification can be found at
https://lirc.readthedocs.io/



Site Documentation


Up & Running


	Installing the LIRC Python & System Package
	Python Package

	System LIRC Package





	Hardware Setup

	Configuring System LIRC
	Linux

	Windows

	macOS

	Example Remote Configuration File

	Example LIRC Options Configuration File










Python Package Usage


	Usage
	Initializing the Client

	Sending IR Codes










Reference


	API Specification

	Changelog
	2.0.2 - 2022-11-25

	2.0.1 - 2021-11-28

	2.0.0 - 2021-04-18

	1.0.1 - 2020-12-26

	1.0.0 - 2020-12-26

	0.2.0 - 2020-12-13

	0.1.0 - 2020-07-13





	Contributor Covenant Code of Conduct
	Our Pledge

	Our Standards

	Our Responsibilities

	Scope

	Enforcement

	Attribution










Legal


	MIT License






Development


	Contributing Guidelines
	General Guidelines

	Getting Up & Running












Indices and tables


	Index


	Search Page







          

      

      

    

  

    
      
          
            
  
Installing the LIRC Python & System Package

Since this package is merely a wrapper around the LIRC
daemon, it is expected that LIRC is installed and setup
on the given system as well to be able to use the python
package.


Python Package

This package is hosted on PyPI and can be installed
through pip.

$ pip install lirc







System LIRC Package

While LIRC was originally created for Linux, there
are ports of LIRC to macOS and Windows which this
python package is compatibile with.

Linux:



	It is highly likely that the package manager on
your system already has LIRC packaged up and ready
to be installed for you. e.g. sudo apt install lirc on Ubuntu.


	If not, you may have to compile and install [https://www.lirc.org/html/install.html]
it manually, but I would avoid that if possible.







Windows:



	WinLIRC [http://winlirc.sourceforge.net/] is a port for Windows.
It works a bit differently since it is just a collection of files
in a folder that you run. More information on setting up WinLIRC can be found
at configuring the system LIRC.







macOS:



	There is a port on MacPorts [https://ports.macports.org/port/lirc/summary]
with it’s source code on GitHub [https://github.com/andyvand/LIRC]. However,
it doesn’t appear to be maintained any longer and is not the latest LIRC version.
You can still install it using port install lirc or build the package from
source using the instructions on the README of the GitHub repository.











          

      

      

    

  

    
      
          
            
  
Hardware Setup

This package will work as long as you have a lirc daemon running. You can use
the version() method on the Client and see what version of the lirc
daemon is running.  However, in order to do anything useful (such as sending
IR codes), you’ll need to have an IR emitter or transciever hooked up to your
computer and recognized by lirc.




          

      

      

    

  

    
      
          
            
  
Configuring System LIRC

Once you have your IR emitter or transciever hooked
up to your computer, you’ll want to configure the
system installed LIRC to ensure it works for emitting
IR.

You’ll also want to ensure you have a configuration
file for the remote control that you want to emulate when
emitting IR since whatever you’re sending IR to will likely
only understand IR codes from certain remotes.

This process will be different depending on the operating system you are using.
Below are instructions for Linux, Windows, and macOS. See the
LIRC configuration guide [https://www.lirc.org/html/configuration-guide.html]
for more information. However, WinLIRC will be a bit different and you should read
their own resources if you are on Windows as well.


Linux

LIRC configuration is typically in /etc/lirc/. The two things you’ll have to figure
out on your own is the lirc_options.conf file and adding your remote configuration
file as these are dependent on the hardware you use for your setup. However, I can give
general recommendations or what I typically do.

For lirc_options.conf, the only change I make is to change the driver from
devinput to default. Devinput works fine for receiving IR, but it will not allow
you to emit IR. This driver is dependent on your hardware, but LIRC just works with
most devices on this driver nowadays.

For the remote configuration file, if you’re using a common remote control, you may be
able to find it in the LIRC remote control database [http://lirc.sourceforge.net/remotes/].
Otherwise, you’ll have to create it yourself. This can be done with
LIRC’s IR record utility [https://www.lirc.org/html/irrecord.html]. However, I’ve had much
better luck using a RedRat3-II [http://lircredrat3.sourceforge.net/] and RedRat’s
IR Signal Database [https://www.redrat.co.uk/software/ir-signal-database-utility/] for creating
the remote configuration file. The RedRat3-II is now discontinued, although
its driver’s are still available [https://www.redrat.co.uk/support/firmware-drivers/], but you
could look into the RedRatX [https://www.redrat.co.uk/products/redrat-x/] or see if you can
find a RedRat3-II used [https://www.ebay.com/sch/i.html?_nkw=redrat3-ii&_sacat=0]. Place this
generated remote configuration file in your /etc/lirc/lircd.conf.d folder.


Iguanaworks IR Transciever Note

If you’re using an Iguanaworks IR Transciever, you may find the discussion below useful. Basically,
the device should just work on the default driver.



	https://github.com/iguanaworks/iguanair/issues/39










Windows

You’ll want to make sure you install WinLIRC at http://winlirc.sourceforge.net/.
This is the LIRC port for Windows which corresponds with version 0.9.0 of LIRC. Past that,
you can run the WinLIRC executable file and select the “Input Plugin” for your device. Then,
you can select the remote configuration and click OK. You should now be able to select your remote
and send key codes. As long as the program is running in the background (it minimizes to the tray),
this package will be able to connect to it.



macOS

On macOS, the paths are almost the same as the Linux ones, just prefixed with /opt/local/.
Therefore, the LIRC configuration is typically at /opt/local/etc/lirc/ and the lircd
socket is at /opt/local/var/run/lirc/lircd.

Refer to the Linux section for the rest of the configuration as they are almost the same besides
the /opt/local/ prefix. However, on macOS, there is also no default driver like there is
on Linux. You’ll have to figure out what devices will work and what driver it needs so you can
input that into lirc_options.conf.



Example Remote Configuration File

The following is an example of a remote configuration
file that would be placed inside of the lircd.conf.d/ folder.
This is for a
KENMORE_253-79081 [http://lirc.sourceforge.net/remotes/Kenmore/Kenmore_253_79081],
remote taken from the LIRC remote database [http://lirc.sourceforge.net/remotes].

# Please make this file available to others
# by sending it to <lirc@bartelmus.de>
#
# this config file was automatically generated
# using lirc-0.9.0-pre1(default) on Sun Sep  7 00:53:46 2014
#
# contributed by Steven Shamlian
#
# brand: Kenmore
# model no. of remote control: Unknown
# devices being controlled by this remote: Kenmore 253.79081
#
# Kernel revision: 3.12.26+
# Driver/device option: --driver default --device /dev/lirc0
# Capture device:  Vishay TSOP6238 to Raspberry Pi GPIO pin 23
# Kernel modules: lirc_rpi
# Type of device controlled: Air Conditioner
# Devices controlled: Kenmore 253.79081
#
# Remote Layout:
#
# /------------------------\
# |KEY_POWER       KEY_TIME|
# |                        |
# |KEY_VOLUMEUP      KEY_UP|
# |        KEY_PLAY        |
# |KEY_VOLUMEDOWN  KEY_DOWN|
# |        KEY_SAVE        |
# |KEY_SHUFFLE    KEY_SLEEP|
# |        KEY_PAUSE       |
# \------------------------/
# VOLUME keys are for fan speed
# PLAY starts air conditioner
# PAUSE makes unit fan-only
# SAVE is Energy Saver mode
# SHUFFLE is for Automatic Fan

begin remote

  name  KENMORE_253-79081
  bits           16
  flags SPACE_ENC|CONST_LENGTH
  eps            30
  aeps          100

  header       9159  4455
  one           639  1615
  zero          639   486
  ptrail        637
  repeat       9103  2199
  pre_data_bits   16
  pre_data       0x10AF
  gap          108066
  toggle_bit_mask 0x0

      begin codes
          KEY_POWER                0x8877
          KEY_TIME                 0x609F
          KEY_VOLUMEUP             0x807F
          KEY_VOLUMEDOWN           0x20DF
          KEY_PLAY                 0x906F
          KEY_UP                   0x708F
          KEY_DOWN                 0xB04F
          KEY_SAVE                 0x40BF
          KEY_SHUFFLE              0xF00F
          KEY_SLEEP                0x00FF
          KEY_PAUSE                0xE01F
      end codes

end remote







Example LIRC Options Configuration File

This is a lirc_options.conf file, taken
from /etc/lirc/lirc_options.conf on a
Linux machine, to get a feel for the configuration
options offered.

# These are the default options to lircd, if installed as
# /etc/lirc/lirc_options.conf. See the lircd(8) and lircmd(8)
# manpages for info on the different options.
#
# Some tools including mode2 and irw uses values such as
# driver, device, plugindir and loglevel as fallback values
# in not defined elsewhere.

[lircd]
nodaemon        = False
driver          = default
device          = auto
output          = /var/run/lirc/lircd
pidfile         = /var/run/lirc/lircd.pid
plugindir       = /usr/lib/lirc/plugins
permission      = 666
allow-simulate  = No
repeat-max      = 600
#effective-user =
#listen         = [address:]port
#connect        = host[:port]
#loglevel       = 6
#release        = true
#release_suffix = _EVUP
#logfile        = ...
#driver-options = ...

[lircmd]
uinput          = False
nodaemon        = False

# [modinit]
# code = /usr/sbin/modprobe lirc_serial
# code1 = /usr/bin/setfacl -m g:lirc:rw /dev/uinput
# code2 = ...


# [lircd-uinput]
# add-release-events = False
# release-timeout    = 200
# release-suffix     = _EVUP









          

      

      

    

  

    
      
          
            
  
Usage

Once you’ve installed the lirc python package, there will be a number
of things you can now import from it to get started.

from lirc import Client, LircdConnection





The most relevant of these is Client, since this is the main class
you will be using. LircdConnection is the object that is used to configure
the connection to LIRC when you initialize the Client.

If you want to catch any of the exceptions, those are all under lirc.exceptions.

from lirc.exceptions import (
  LircError,
  LircdSocketError,
  LircdConnectionError,
  LircdInvalidReplyPacketError,
  LircdCommandFailureError,
  UnsupportedOperatingSystemError
)






Initializing the Client

import lirc

client = lirc.Client()

print(client.version())
>>> '0.10.1'





To use this package, we instantiate a Client. By initializing it
with no arguments, the Client will attempt to connect to the lirc
daemon with the default connection parameters for your operating system.

However, if you’ve instantiated the Client without any arguments,
you don’t get any errors, and you recieve a response from the version()
command, you are connected to the daemon. Most people should not need to
change the default parameters.


Overriding LIRC Defaults on Initialization

However, what if we the defaults don’t work for us or we have a more complex setup?

Let’s say we’re on Windows and we want to connect over TCP to a remote LIRC server
on another Windows machine. So we’ve passed in an address to override the default
so it doesn’t look for the daemon on the localhost. socket and timeout are
passed in just to show that we can, these are already the defaults on Windows.

import socket
from lirc import Client, LircdConnection

client = Client(
  connection=LircdConnection(
    address=("10.16.30.2", 8765),
    socket=socket.socket(socket.AF_INET, socket.SOCK_STREAM),
    timeout=5.0
  )
)





The Client takes in one optional keyword argument: connection.
This connection must be a LircdConnection. This connection, if not
specified manually, will have default values to connecting to lircd for
the operating system you are using.

The address specifies how to reach the lircd daemon. On Windows,
we pass a (hostname, port) tuple since we connect over TCP such as
('localhost', 8765). However on Linux and macOS, we pass in the path
to the socket on the filesystem as a string.

The socket is the connection type. On Linux/macOS, it will default to a UNIX
domain socket connection. On Windows, socket.socket(socket.AF_INET, socket.SOCK_STREAM)
is used for a connection over TCP.

Lastly, timeout specifies the amount of time to wait when reading from the socket
for a response.



LIRC Initialization Defaults per Operating System

From the options we may pass into the LircdConnection, address
and socket will change depending on the operating system you are using.
The timeout always defaults to 5.0 (seconds).

On Linux, this will attempt to connect to the lircd socket at
/var/run/lirc/lircd and create a socket using AF_UNIX and
SOCK_STREAM.

On macOS, it will be almost identical to Linux except that all the paths
will be prefixed by /opt/local/ so the connection to the lircd
socket will instead be at /opt/local/var/run/lirc/lircd. The socket that
is created will be the same.

However if we are on Windows, we can’t use unix domain sockets. Instead,
WinLIRC uses TCP to communicate with the lirc daemon. So instead of a string
for the address, it defaults to a tuple of ("localhost", 8765), which is the
default connection parameters for WinLIRC. The first part contains the address
whereas the second is the port. Furthermore, the socket that is created uses
AF_INET and SOCK_STREAM instead so we can connect over TCP.




Sending IR Codes

In order to send IR signals with our remote, one option we have
is that we can use the send_once method on the lirc.Client.

import lirc

client = lirc.Client()
client.send_once('our-remote-name', 'key-in-the-remote-file')





Using the send_once() method is quite simple. For any method,
such as this one, that takes in a remote and a key, the parameters
are always in that order with the remote name first and then the key
name. Because the send_once method does not get any meaningful data
back from lircd, there is no return value from it. Instead, as is the case
for most methods here that don’t have a meaningful return value, a
lirc.exceptions.LircdCommandFailureError is raised if the command we
sent failed.

Furthermore, we can also send the key in rapid succession. This is useful
if we, say, want to go to channel 33.

import lirc

client = lirc.Client()
client.send_once('our-remote-name', 'key_3', repeat_count=1)





We can also send IR codes using send_start and send_stop.
send_start works in a similar manner to send_once. The
difference is that with send_start, IR codes are continually
sent until a send_stop call.

import time
import lirc

client = lirc.Client()
client.send_start('our-remote-name', 'key_right')
time.sleep(5)
client.send_stop()





In this example, we see that we can start sending our ‘key_right’
signal for 5 seconds and then call send_stop to stop that. Notice
that we didn’t pass any arguments to send_stop. This is because by
default, the Client will keep track of the last remote name and
remote key that was used with send_start. Optionally, we could of
made it explicit.

client.send_stop('our-remote-name', 'key_right')





This allows you to have multiple ``send_start``s running at the same time,
since you can explicitly pass in which remote and key to stop.





          

      

      

    

  

    
      
          
            
  
API Specification


	
class lirc.Client(connection: Type[lirc.connection.abstract_connection.AbstractConnection] = None)

	Bases: object

Communicate with the lircd daemon.


	
__init__(connection: Type[lirc.connection.abstract_connection.AbstractConnection] = None) → None

	Initialize the client by connecting to the lircd socket.


	Parameters

	
	connection – The connection to lircd. Created with defaults


	on the operating system if one is not provided. (depending) – 






	Raises

	
	TypeError – If connection is not an instance of AbstractConnection.


	LircdConnectionError – If the socket cannot connect to the address.













	
close() → None

	Close the connection to the socket.






	
driver_option(key: str, value: str) → None

	Set driver-specific option named key to given value.


	Parameters

	
	key – The key to set for the driver.


	value – The value for the key to set.






	Raises

	LircdCommandFailure – If the command fails.










	
list_remote_keys(remote: str) → List[str]

	List all the keys for a specific remote.


	Parameters

	remote – The remote to list the keys of.



	Raises

	LircdCommandFailure – If the command fails.



	Returns

	The list of keys from the remote.










	
list_remotes() → List[str]

	List all the remotes that lirc has in
its /etc/lirc/lircd.conf.d folder.


	Raises

	LircdCommandFailure – If the command fails.



	Returns

	The list of all remotes.










	
send_once(remote: str, key: str, repeat_count: int = 0) → None

	Send an lircd SEND_ONCE command.


	Parameters

	
	key – The name of the key to send.


	remote – The remote to use keys from.


	repeat_count – The number of times to repeat this key.
If this is set to 1, that means this key will be
sent twice (repeated once).









Changed in version 2.0.0: The repeat_count parameter has been changed to
have a default value of 0 instead of 1. This ensures
send_once only sends 1 IR signal instead of sending 1
and then repeating it (therefore, 2 signals).




	Raises

	LircdCommandFailure – If the command fails.










	
send_start(remote: str, key: str) → None

	Send an lircd SEND_START command.

This will repeat the given key until
send_stop is called.


	Parameters

	
	remote – The remote to use keys from.


	key – The name of the key to start sending.






	Raises

	LircdCommandFailure – If the command fails.










	
send_stop(remote: str = '', key: str = '') → None

	Send an lircd SEND_STOP command.

The remote and key default to the remote and key
last used with send_start if they are not specified,
since the most likely use case is sending a send_start
and then a send_stop.


	Parameters

	
	remote – The remote to stop.


	key – The key to stop sending.






	Raises

	LircdCommandFailure – If the command fails.










	
set_transmitters(transmitters: Union[int, List[int]]) → None

	Set the active transmitters.

Example

import lirc

client = lirc.Client()

client.set_transmitters(1)

client.set_transmitters([1,3,5])


	Parameters

	transmitters – The transmitters to set active.



	Raises

	LircdCommandFailure – If the command fails.










	
simulate(remote: str, key: str, repeat_count: int = 1, keycode: int = 0) → None

	Simulate an IR event.

The --allow-simulate command line option to lircd must be active for this
command not to fail.


	Lircd Format:

	<code> <repeat count> <button name> <remote control name>


	Example:

	0000000000f40bf0 00 KEY_UP ANIMAX










	Parameters

	
	remote – The remote to simulate key presses from.


	key – The key on the remote to simulate.


	repeat_count – The number of times to repeat the simulated key press.


	keycode – lircd(8) describes this option as a 16 hexadecimal digit
number encoding of the IR signal. However, it says it is depreciated
and should be ignored.






	Raises

	LircdCommandFailure – If the command fails.










	
start_logging(path: Union[str, pathlib.Path]) → None

	Send a lircd SET_INPUTLOG command which sets
the path to log all lircd received data to.


	Parameters

	path – The path to start logging lircd recieved data to.



	Raises

	LircdCommandFailure – If the command fails.










	
stop_logging() → None

	Stop logging to the inputlog path from start_logging.


	Raises

	LircdCommandFailure – If the command fails.










	
version() → str

	Retrieve the version of LIRC


	Raises

	LircdCommandFailure – If the command fails.



	Returns

	The version of LIRC being used.














	
class lirc.LircdConnection(address: Union[str, tuple] = None, socket: socket.socket = None, timeout: float = 5.0)

	Bases: lirc.connection.abstract_connection.AbstractConnection


	
__init__(address: Union[str, tuple] = None, socket: socket.socket = None, timeout: float = 5.0)

	Initialize the LircdConnection. This sets up state we’ll
need, but it does not connect to that socket. To connect,
we can call connect() after initialization.


	Parameters

	
	address – The address to the socket. Defaults to different
values depending on the host operating system. On Linux,
it defaults to /var/run/lirc/lircd. On Windows, a tuple
of ("localhost", 8765). And on Darwin (macOS),
/opt/local/var/run/lirc/lircd.


	socket – The socket to use to connect to lircd. The default
socket is determined using the host operating system. For
Linux and Darwin, a unix domain socket connection is used
i.e. socket.socket(socket.AF_UNIX, socket.SOCK_STREAM).
However on Windows, a TCP socket is used
i.e. socket.socket(socket.AF_INET, socket.SOCK_STREAM).


	timeout – The amount of time to wait for data from the socket before
we timeout.













	
address

	Retrieve the address that this lircd connection
is connected to.


	Returns

	The current address being used.










	
close()

	Closes the socket connection.






	
connect()

	Connect to the socket at the address both specified on init.


	Raises

	LircdConnectionError – If the address is invalid or lircd
is not running.










	
readline() → str

	Read a line of data from the lircd socket.

We read 4096 bytes at a time as the buffer size.
Therefore after data is read from the socket, all
the lines are stored in a buffer if there is more than
1 and subsequent calls grab a line that stored in that
buffer until it is empty. Then, another call to the
socket would be made.


	Raises

	
	TimeoutError – If we are not able to grab data from
the socket in a specified amount of time (the initial
timeout time on initialization).


	LircdSocketError – If some other error happened when
trying to read from the socket.






	Returns

	A line from the lircd socket.










	
send(data: str)

	Send a commend to the lircd socket connection.


	Parameters

	data – The data to send to the lircd socket.



	Raises

	TypeError – if data is not a string.
















          

      

      

    

  

    
      
          
            
  
Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a
Changelog [https://keepachangelog.com/en/1.0.0/], and this project
adheres to Semantic Versioning [https://semver.org/spec/v2.0.0.html].


2.0.2 - 2022-11-25

Added


	Official support for Python 3.11. There is no user-facing change here.
However, the tests are now also being run against Python 3.11 on CI and
being advertised as supported via a pypi classifier.






2.0.1 - 2021-11-28

Changed


	All double underscore (__) internal attributes have been changed to instead
be prefixed by a single underscore (_). This removes the name mangling that Python
does on those attributes.




Fixed


	lirc.Client will throw a TypeError only if the passed connection
is not an instance of AbstractConnection. Previously, it would throw
a TypeError if connection was not an LircdConnection.






2.0.0 - 2021-04-18

Fixed - Potential Breaking Changes


	The Client’s send_once method was sending
an IR code twice by default. This is because the repeat_count keyword argument
was set to 1 instead of 0, causing it to send the initial IR code and repeat it once.
This now defaults to 0.

On v1, this can be worked around by explicitly specifying the repeat_count to only send 1 IR signal by setting it to 0:

import lirc

client = lirc.Client()
client.send_once('remote', 'key', repeat_count=0)







	The Darwin connection to lircd was set to default to
/opt/run/var/run/lirc/lircd when it should have been
/opt/local/var/run/lirc/lircd. This is unlikely to have
an impact since the previous default directory was incorrect.

With v1 and on macOS, this can also be worked around by explicitly specifying the connection path rather
than relying on the default.

import lirc

client = lirc.Client(
  connection=lirc.LircdConnection(
    address="/opt/local/var/run/lirc/lircd",
  )
)











1.0.1 - 2020-12-26

Fixed


	PyPI is complaining that v1.0.0 is already taken, since it was
a release that was deleted from a previous mistake.






1.0.0 - 2020-12-26

Added


	DefaultConnection.address and DefaultConnection.socket may raises
an UnsupportedOperatingSystemError if the operating system you’re on
is not MacOS, Linux, or Windows.




Changed


	lirc.Client raises a TypeError instead of a ValueError now
if a connection is passed in that is not an instance of LircdConnection.


	send on lirc.Client is now called send_once.


	start_repeat on lirc.Client is now called send_start.


	stop_repeat on lirc.Client is now called send_stop.




Removed


	socket property from LircdConnection.




Fixed


	The remote and key optional arguments to the lirc.Client’s stop_repeat
method were not overriding the last sent remote and key.






0.2.0 - 2020-12-13

Added


	LircdConnection to handle configuring the connection on Client.




Changed


	Lirc is now named Client.


	Client now takes in a connection as the optional argument
to configure it’s connection. That connection must be a LircdConnection
class if you would like to customize the connection. The LircdConnection takes
in an address, socket, and timeout with optional keyword arguments.
Anything not specified with use the defaults for that operating system.




Removed


	DEFAULT_SOCKET_PATH constant on Client. It no longer makes sense with cross-platform support.


	ENCODING constant on Client.


	socket_path and socket_timeout on the Lirc constructor.






0.1.0 - 2020-07-13


	Initial Release








          

      

      

    

  

    
      
          
            
  
Contributor Covenant Code of Conduct


Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and expression,
level of experience, education, socio-economic status, nationality, personal
appearance, race, religion, or sexual identity and orientation.



Our Standards

Examples of behavior that contributes to creating a positive environment
include:


	Using welcoming and inclusive language


	Being respectful of differing viewpoints and experiences


	Gracefully accepting constructive criticism


	Focusing on what is best for the community


	Showing empathy towards other community members




Examples of unacceptable behavior by participants include:


	The use of sexualized language or imagery and unwelcome sexual attention or advances


	Trolling, insulting/derogatory comments, and personal or political attacks


	Public or private harassment


	Publishing others’ private information, such as a physical or electronic address, without explicit permission


	Other conduct which could reasonably be considered inappropriate in a professional setting






Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.



Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.



Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at eugenetriguba@gmail.com. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.



Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org],
version 1.4, available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see
https://www.contributor-covenant.org/faq





          

      

      

    

  

    
      
          
            
  
MIT License

Copyright (c) 2020 Eugene Triguba

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.




          

      

      

    

  

    
      
          
            
  
Contributing Guidelines

Thank you for your interest! If you find a bug, want to suggest an improvement, or
any other change, please open a issue first. This ensures your time is not wasted
if you were planning on creating a pull request, but the changes suggested do not
work for this project.


General Guidelines

Commit history:


	Try to keep a clean commit history so it is easier to see your changes.
Keep functional changes and refactorings in separate commits.




Commit messages:


	Have a short one line summary of your change followed by as many paragraphs
of explanation as you need. This is the place to clarify any subtleties you
have in your implementation, document other approaches you tried that didn’t
end up working, any limitations on your implementation, etc. The most important
part here is to describe why you made the change you did, not simply what the
change you made is.




Changelog:


	Please ensure to update the changelog by adding a new bullet under an Added, Changed,
Deprecated, Removed, Fixed, or Security section headers under the Unreleased version.
If any of those sections are not present, feel free to add the one you need. See
Keep a Changelog if you need guidance on what makes a good entry since this project
follows those principles.




Tests:


	Ensure the tests pass: poetry run task test to run all tests.


	For any significant code changes, there must be tests to accompany them.
All unit tests are written with pytest.




Code Format:


	There is a pre-commit pipeline to ensure a standard code format.
Make sure to install the pre-commit hooks before making any commits
with pre-commit install.




CI Pipeline:


	There is a CI pipeline that is run using Github Actions on commits to master, dev, and on pull requests.
This pipeline must pass for your changes to be accepted.






Getting Up & Running

This project uses Poetry [https://python-poetry.org] for the build system and dependency management.
To get started, you will want that installed on your system.

Once you’ve installed Poetry, you can install the dependencies, this package, and go into the
virtual environment.

$ poetry install
$ poetry shell





From inside the virtual environment, we can work with the package and easily run the tasks for
this project such as task test and task lint that are in the pyproject.toml file.





          

      

      

    

  

    
      
          
            

   Python Module Index


   
   l
   


   
     		 	

     		
       l	

     
       	
       	
       lirc	
       

   



          

      

      

    

  

    
      
          
            

Index



 _
 | A
 | C
 | D
 | L
 | R
 | S
 | V
 


_


  	
      	__init__() (lirc.Client method)

      
        	(lirc.LircdConnection method)


      


  





A


  	
      	address (lirc.LircdConnection attribute)


  





C


  	
      	Client (class in lirc)


      	close() (lirc.Client method)

      
        	(lirc.LircdConnection method)


      


  

  	
      	connect() (lirc.LircdConnection method)


  





D


  	
      	driver_option() (lirc.Client method)


  





L


  	
      	lirc (module)


      	LircdConnection (class in lirc)


  

  	
      	list_remote_keys() (lirc.Client method)


      	list_remotes() (lirc.Client method)


  





R


  	
      	readline() (lirc.LircdConnection method)


  





S


  	
      	send() (lirc.LircdConnection method)


      	send_once() (lirc.Client method)


      	send_start() (lirc.Client method)


      	send_stop() (lirc.Client method)


  

  	
      	set_transmitters() (lirc.Client method)


      	simulate() (lirc.Client method)


      	start_logging() (lirc.Client method)


      	stop_logging() (lirc.Client method)


  





V


  	
      	version() (lirc.Client method)


  







          

      

      

    

  _static/file.png





_static/minus.png





_static/up-pressed.png





_static/up.png





_static/plus.png





nav.xhtml

    
      Table of Contents


      
        		
          LIRC Python Package
        


        		
          Installing the LIRC Python & System Package
          
            		
              Python Package
            


            		
              System LIRC Package
            


          


        


        		
          Hardware Setup
        


        		
          Configuring System LIRC
          
            		
              Linux
              
                		
                  Iguanaworks IR Transciever Note
                


              


            


            		
              Windows
            


            		
              macOS
            


            		
              Example Remote Configuration File
            


            		
              Example LIRC Options Configuration File
            


          


        


        		
          Usage
          
            		
              Initializing the Client
              
                		
                  Overriding LIRC Defaults on Initialization
                


                		
                  LIRC Initialization Defaults per Operating System
                


              


            


            		
              Sending IR Codes
            


          


        


        		
          API Specification
        


        		
          Changelog
          
            		
              2.0.2 - 2022-11-25
            


            		
              2.0.1 - 2021-11-28
            


            		
              2.0.0 - 2021-04-18
            


            		
              1.0.1 - 2020-12-26
            


            		
              1.0.0 - 2020-12-26
            


            		
              0.2.0 - 2020-12-13
            


            		
              0.1.0 - 2020-07-13
            


          


        


        		
          Contributor Covenant Code of Conduct
          
            		
              Our Pledge
            


            		
              Our Standards
            


            		
              Our Responsibilities
            


            		
              Scope
            


            		
              Enforcement
            


            		
              Attribution
            


          


        


        		
          MIT License
        


        		
          Contributing Guidelines
          
            		
              General Guidelines
            


            		
              Getting Up & Running
            


          


        


      


    
  

_static/comment-bright.png





_static/ajax-loader.gif





_static/down-pressed.png





_static/down.png





_static/comment-close.png





_static/comment.png





