

LIRC Python Package

[image: Python Version]
 [https://www.python.org/downloads/][image: Project Version]
 [https://pypi.org/project/lirc/][image: Documentation Status]
 [https://lirc.readthedocs.io/en/latest/?badge=latest][image: Build Status]
 [https://github.com/eugenetriguba/lirc/actions/][image: Code Coverage]
 [https://codecov.io/gh/eugenetriguba/lirc][image: Maintainability]
 [https://codeclimate.com/github/eugenetriguba/lirc/maintainability][image: Code Formatter]
 [https://github.com/psf/black][image: Contributing]
 [https://github.com/eugenetriguba/lirc/issues][image: License]
 [https://pypi.python.org/pypi/lirc/]This is a python package that allows you to interact with the daemon in the
Linux Infrared Remote Control [https://lirc.org] package. Interacting with
the daemon allows you to send IR signals from a computer.

More information on the lircd daemon, socket interface,
reply packet format, etc. can be found at https://www.lirc.org/html/lircd.html

Installation

This package is hosted on PyPI and can be installed
through pip.

$ pip install lirc

However since this is a wrapper around the LIRC daemon, it
is expected that LIRC is installed and setup on the given
system as well.

More information on that can be found in the installation [https://lirc.readthedocs.io/en/latest/installation.html]
portion of the documentation.

Using the Lirc Package

from lirc import Lirc

lirc = Lirc()
response = lirc.version()

print(response.command)
>>> 'VERSION'
print(response.success)
>>> True
print(response.data)
>>> ['0.10.1']

To get started with the package, we import Lirc and can
initialize it with the defaults by passing it no arguments.

This will assume a socket path of /var/run/lirc/lircd.
Furthermore, this will also then assume a socket connection
using AF_UNIX and SOCK_STREAM. These are both the defaults
that should work on a Linux system. There are ports of LIRC
to Windows and macOS but using the package there is far less
common. However, both of these are configurable through options
passed to Lirc to allow it to be used on those operating systems
as well.

After sending any command to the LIRC daemon, this package will create
a LircResponse for us that it returns. That response contains the
command we sent to LIRC, whether it was successful, and any data that
was returned back to us.

Further Documentation

More information on how to setup the system installed LIRC, how to use this python library,
and a full API specification can be found at https://lirc.readthedocs.io/

Site Documentation

Up & Running

	Installing the LIRC Python & System Package
	Python Package

	System LIRC Package

	Hardware Setup

	Configuring System LIRC
	Linux

	Windows

	macOS

Python Package Usage

	Usage
	Initializing Lirc

Reference

	API Specification

	Changelog
	0.1.0 - 2020-07-13

	Contributor Covenant Code of Conduct
	Our Pledge

	Our Standards

	Our Responsibilities

	Scope

	Enforcement

	Attribution

Legal

	MIT License

Development

	Contributing Guidelines
	General Guidelines

	Getting Up & Running

Indices and tables

	Index

	Search Page

Installing the LIRC Python & System Package

Since this package is merely a wrapper around the LIRC
daemon, it is expected that LIRC is installed and setup
on the given system as well to be able to use the python
package.

Python Package

This package is hosted on PyPI and can be installed
through pip.

$ pip install lirc

System LIRC Package

While there are ports of LIRC to macOS and Windows,
the original Linux version is generally easier to
get working and install.

Linux:

	It is highly likely that the package manager on
your system already has LIRC packaged up and ready
to be installed for you. e.g. sudo apt install lirc on Ubuntu.

	If not, you may have to compile and install [https://www.lirc.org/html/install.html]
it manually, but I would avoid that if possible.

Windows:

	WinLIRC at http://winlirc.sourceforge.net/ is a port for Windows.
It works a bit differently since it is just a collection of files
in a folder that you run so you’ll have to adjust the socket
and socket_path parameter. More information on that can be found
at using LIRC on Windows.

macOS:

	There is a port on MacPorts at https://ports.macports.org/port/lirc/summary
with it’s source code on GitHub at https://github.com/andyvand/LIRC. However,
it doesn’t appear to be maintained any longer and is not the latest LIRC version.
You can then run port install lirc or build the package from source using
the instructions on the README of the GitHub repository. See
using LIRC on macOS for more information on
getting LIRC setup on macOS and how to use this python package with it.

Hardware Setup

In order to use this package, you’ll need to have an IR emitter
or transciever hooked up to your computer.

Configuring System LIRC

Once you have your IR emitter or transciever hooked
up to your computer, you’ll want to configure the
system installed LIRC to ensure it works for emitting
IR.

You’ll also want to ensure you have a configuration
file for the remote control that you want to emulate when
emitting IR since whatever you’re sending IR to may only
understand IR codes from certain remotes.

Linux

Windows

macOS

Usage

Once you’ve installed the lirc python package, there will be a number
of things you can now import from it to get started.

from lirc import (
 Lirc,
 LircResponse,
 LircError,
 LircSocketError,
 LircSocketTimeoutError,
 InvalidReplyPacketFormatError
)

The most relevant of these is Lirc, since this is the main class
you will be using.

Initializing Lirc

The Lirc class takes in three separate options, which all have default
values, that we may pass into it to construct it and override those default
values.

The simplest way to construct Lirc is with no arguments at all.

from lirc import Lirc

lirc = Lirc()

This will attempt to connect to the lircd socket at “/var/run/lirc/lircd” on
your system, create a socket using AF_UNIX and SOCK_STREAM, and sets
a socket timeout of 5 seconds.

API Specification

	
class lirc.Lirc(socket_path: str = '/var/run/lirc/lircd', socket: socket.socket = <socket.socket fd=3, family=AddressFamily.AF_UNIX, type=SocketKind.SOCK_STREAM, proto=0>, socket_timeout: int = 5)

	Bases: object

Communicate with the lircd daemon.

	
DEFAULT_SOCKET_PATH = '/var/run/lirc/lircd'

	

	
ENCODING = 'utf-8'

	

	
list_remote_keys(remote: str) → lirc.response.LircResponse

	List all the keys for a specific remote.

	Parameters

	remote – The remote to list the keys of.

	Returns

	The response of the command.

	
list_remotes() → lirc.response.LircResponse

	List all the remotes in LIRC

	Returns

	The response of the command.

	
send_once(key: str, remote: str, repeat_count: int = 1) → Union[lirc.response.LircResponse, List[lirc.response.LircResponse]]

	Send an LIRC SEND_ONCE command.

	Structure of the command:

	
	SEND_ONCE <remote-name> <key-name-from-remote-file> [repeat-count]

	Parameters

	
	key – The name of the key to send.

	remote – The remote to use keys from.

	repeat_count – The number of times to press this key.

	Returns

	a response from the command or a list of those responses
if repeat_count > 1.

	
send_start(key: str, remote: str) → lirc.response.LircResponse

	Send an LIRC SEND_START command.

	Structure of the command:

	
	SEND_START <remote-name> <key-name-from-remote-file>

	Parameters

	
	key – The name of the key to start sending.

	remote – The remote to use keys from.

	Returns

	The response of the command.

	
send_stop(key: str, remote: str) → lirc.response.LircResponse

	Send an LIRC SEND_STOP command.

	Structure of the command:

	
	SEND_STOP <remote-name> <key-name-from-remote-file>

	Parameters

	
	key – The name of the key to start sending.

	remote – The remote to use keys from.

	Returns

	The response of the command.

	
set_inputlog(path: str) → lirc.response.LircResponse

	Set the path to log all lircd received data to.

	Returns

	The response of the command.

	
stop_inputlog() → lirc.response.LircResponse

	Stop logging to the inputlog path from set_inputlog.

	Returns

	The response of the command.

	
version() → lirc.response.LircResponse

	Retrieve the version of LIRC

	Returns

	The response of the command with
the version in the data field.

	
class lirc.LircResponse(command: str, success: bool, data: list)

	Bases: object

A response from the LIRC daemon. Stores the command that had
been sent, whether or not it was successful, and the parsed
reply packet data.

	
exception lirc.LircError

	Bases: Exception

A generic error that comes from this package.

	
exception lirc.LircSocketError

	Bases: lirc.exceptions.LircError

For when a generic error occurs with the lircd socket

	
exception lirc.LircSocketTimeoutError

	Bases: lirc.exceptions.LircSocketError

For when a timeout error occurs with the socket.
This can happen when recv does not find any data for
a given amount of time.

	
exception lirc.InvalidReplyPacketFormatError

	Bases: lirc.exceptions.LircError

The reply packet from LIRC was in an invalid format.

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a
Changelog [https://keepachangelog.com/en/1.0.0/], and this project
adheres to Semantic Versioning [https://semver.org/spec/v2.0.0.html].

0.1.0 - 2020-07-13

	Initial Release

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and expression,
level of experience, education, socio-economic status, nationality, personal
appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at eugenetriguba@gmail.com. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org],
version 1.4, available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see
https://www.contributor-covenant.org/faq

MIT License

Copyright (c) 2020 Eugene Triguba

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Contributing Guidelines

Thank you for your interest! If you find a bug, want to suggest an improvement, or
any other change, please open a issue first. This ensures your time is not wasted
if you were planning on creating a pull request, but the changes suggested do not
work for this project.

General Guidelines

Commit history:

	Try to keep a clean commit history so it is easier to see your changes.
Keep functional changes and refactorings in separate commits.

Commit messages:

	Have a short one line summary of your change followed by as many paragraphs
of explanation as you need. This is the place to clarify any subtleties you
have in your implementation, document other approaches you tried that didn’t
end up working, any limitations on your implementation, etc. The most important
part here is to describe why you made the change you did, not simply what the
change you made is.

Changelog:

	Please ensure to update the changelog by adding a new bullet under an Added, Changed,
Deprecated, Removed, Fixed, or Security section headers under the Unreleased version.
If any of those sections are not present, feel free to add the one you need. See
Keep a Changelog if you need guidance on what makes a good entry since this project
follows those principles.

Tests:

	Ensure the tests pass: poetry run task test to run all tests.

	For any significant code changes, there must be tests to accompany them.
All unit tests are written with pytest.

Code Format:

	There is a pre-commit pipeline to ensure a standard code format.
Make sure to install the pre-commit hooks before making any commits
with pre-commit install.

CI Pipeline:

	There is a CI pipeline that is run using Github Actions on commits to master, dev, and on pull requests.
This pipeline must pass for your changes to be accepted.

Getting Up & Running

This project uses Poetry [https://python-poetry.org] for the build system and dependency management.
To get started, you will want that installed on your system.

Once you’ve installed Poetry, you can install the dependencies, this package, and go into the
virtual environment.

$ poetry install
$ poetry shell

From inside the virtual environment, we can work with the package and easily run the tasks for
this project such as task test and task lint that are in the pyproject.toml file.

 Python Module Index

 l

 		 	

 		
 l	

 	
 	
 lirc	

Index

 D
 | E
 | I
 | L
 | S
 | V

D

 	
 	DEFAULT_SOCKET_PATH (lirc.Lirc attribute)

E

 	
 	ENCODING (lirc.Lirc attribute)

I

 	
 	InvalidReplyPacketFormatError

L

 	
 	Lirc (class in lirc)

 	lirc (module)

 	LircError

 	LircResponse (class in lirc)

 	
 	LircSocketError

 	LircSocketTimeoutError

 	list_remote_keys() (lirc.Lirc method)

 	list_remotes() (lirc.Lirc method)

S

 	
 	send_once() (lirc.Lirc method)

 	send_start() (lirc.Lirc method)

 	
 	send_stop() (lirc.Lirc method)

 	set_inputlog() (lirc.Lirc method)

 	stop_inputlog() (lirc.Lirc method)

V

 	
 	version() (lirc.Lirc method)

 _static/plus.png

_static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 LIRC Python Package

 		
 Installing the LIRC Python & System Package

 		
 Python Package

 		
 System LIRC Package

 		
 Hardware Setup

 		
 Configuring System LIRC

 		
 Linux

 		
 Windows

 		
 macOS

 		
 Usage

 		
 Initializing Lirc

 		
 API Specification

 		
 Changelog

 		
 0.1.0 - 2020-07-13

 		
 Contributor Covenant Code of Conduct

 		
 Our Pledge

 		
 Our Standards

 		
 Our Responsibilities

 		
 Scope

 		
 Enforcement

 		
 Attribution

 		
 MIT License

 		
 Contributing Guidelines

 		
 General Guidelines

 		
 Getting Up & Running

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

