
LIRC Python Package
Release 1.0.0

Apr 19, 2021

Up Running

1 Installation 3

2 Usage Quick Start 5
2.1 Customizing the Client . 5
2.2 Sending IR . 6
2.3 Handling Errors . 6

3 Further Documentation 7

4 Site Documentation 9
4.1 Installing the LIRC Python & System Package . 9
4.2 Hardware Setup . 10
4.3 Configuring System LIRC . 10
4.4 Usage . 13
4.5 API Specification . 14
4.6 Changelog . 17
4.7 Contributor Covenant Code of Conduct . 18
4.8 MIT License . 19
4.9 Contributing Guidelines . 20

5 Indices and tables 23

Python Module Index 25

Index 27

i

ii

LIRC Python Package, Release 1.0.0

This is a python package that allows you to interact with the daemon in the Linux Infrared Remote Control package.
By interacting with the daemon, it allows you to programmatically send IR signals from a computer. This package is
for emitting IR signals, but it does not support listening to IR codes.

More information on the lircd daemon, socket interface, reply packet format, etc. can be found at https://www.lirc.
org/html/lircd.html

Up Running 1

https://www.python.org/downloads/
https://pypi.org/project/lirc/
https://lirc.readthedocs.io/en/latest/?badge=latest
https://github.com/eugenetriguba/lirc/actions/
https://codecov.io/gh/eugenetriguba/lirc
https://codeclimate.com/github/eugenetriguba/lirc/maintainability
https://github.com/eugenetriguba/lirc/issues
https://pypi.python.org/pypi/lirc/
https://lirc.readthedocs.io/en/latest/installation.html
https://lirc.org
https://www.lirc.org/html/lircd.html
https://www.lirc.org/html/lircd.html

LIRC Python Package, Release 1.0.0

2 Up Running

CHAPTER 1

Installation

This package is hosted on PyPI and can be installed through pip.

$ pip install lirc

However since this is a wrapper around the LIRC daemon, it is expected that LIRC is installed and setup on the given
system as well.

More information on that can be found in the installation portion of the documentation.

3

https://lirc.readthedocs.io/en/latest/installation.html

LIRC Python Package, Release 1.0.0

4 Chapter 1. Installation

CHAPTER 2

Usage Quick Start

2.1 Customizing the Client

import lirc

client = lirc.Client()

print(client.version())
>>> '0.10.1'

To use this package, we instantiate a Client. When we initialize the Client in the example above, we use the
defaults by passing it no arguments.

The defaults use the LircdConnection class. These defaults depend on your operating system and can be looked
up in the full documentation. However, we can customize these defaults if desired.

import socket
import lirc

client = lirc.Client(
connection=lirc.LircdConnection(
address="/var/run/lirc/lircd",
socket=socket.socket(socket.AF_UNIX, socket.SOCK_STREAM),
timeout = 5.0

)
)

The address specifies how to reach the lircd daemon. On Windows, we pass a (hostname, port) tuple since we
connect over TCP. However on Linux and macOS, we pass in the socket path as a string. For the client in the example
above, we set it up using the defaults for a Linux machine. While it illustrates what is customizable, it is not a practical
example since you could just call Client() if you’re on Linux and achieve the same outcome.

5

LIRC Python Package, Release 1.0.0

2.2 Sending IR

import lirc

client = lirc.Client()
client.send_once("my-remote-name", "KEY_POWER")
client.send_once("my-remote-name", "KEY_3", repeat_count=2)

With sending IR, we can use the send_once method and optionally, send multiple by using the repeat_count keyword
argument.

2.3 Handling Errors

import lirc

client = lirc.Client()

try:
client.send_once('some-remote', 'key_power')

except lirc.LircdCommandFailureError as error:
print('The command we sent failed! Check the error message')
print(error)

If the command was not successful, a LircdCommandFailureError exception will be thrown. There are other
errors that may be raised, which can be looked up in the full documentation, but this is the most likely when sending
commands.

6 Chapter 2. Usage Quick Start

CHAPTER 3

Further Documentation

More information on how to setup the system installed LIRC, how to use this python library, and a full API specifica-
tion can be found at https://lirc.readthedocs.io/

7

https://lirc.readthedocs.io/

LIRC Python Package, Release 1.0.0

8 Chapter 3. Further Documentation

CHAPTER 4

Site Documentation

4.1 Installing the LIRC Python & System Package

Since this package is merely a wrapper around the LIRC daemon, it is expected that LIRC is installed and setup on
the given system as well to be able to use the python package.

4.1.1 Python Package

This package is hosted on PyPI and can be installed through pip.

$ pip install lirc

4.1.2 System LIRC Package

While LIRC was originally created for Linux, there are ports of LIRC to macOS and Windows which this python
package is compatibile with.

Linux:

• It is highly likely that the package manager on your system already has LIRC packaged up and ready to be
installed for you. e.g. sudo apt install lirc on Ubuntu.

• If not, you may have to compile and install it manually, but I would avoid that if possible.

Windows:

• WinLIRC at http://winlirc.sourceforge.net/ is a port for Windows. It works a bit differently since it is just a
collection of files in a folder that you run. More information on that can be found at using LIRC on Windows.

macOS:

• There is a port on MacPorts at https://ports.macports.org/port/lirc/summary with it’s source code on GitHub
at https://github.com/andyvand/LIRC. However, it doesn’t appear to be maintained any longer and is not the

9

https://www.lirc.org/html/install.html
http://winlirc.sourceforge.net/
./using-lirc-on-windows.html
https://ports.macports.org/port/lirc/summary
https://github.com/andyvand/LIRC

LIRC Python Package, Release 1.0.0

latest LIRC version. You can then run port install lirc or build the package from source using the
instructions on the README of the GitHub repository.

4.2 Hardware Setup

In order to use this package, you’ll need to have an IR emitter or transciever hooked up to your computer.

4.3 Configuring System LIRC

Once you have your IR emitter or transciever hooked up to your computer, you’ll want to configure the system installed
LIRC to ensure it works for emitting IR.

You’ll also want to ensure you have a configuration file for the remote control that you want to emulate when emitting
IR since whatever you’re sending IR to will likely only understand IR codes from certain remotes.

This process will be different depending on the operating system you are using. Below are instructions for Linux,
Windows, and macOS. See the LIRC configuration guide for more information. However, WinLIRC will be a bit
different and you should read their own resources if you are on Windows as well.

4.3.1 Linux

LIRC configuration is typically in /etc/lirc/. The two things you’ll have to figure out on your own is the
lirc_options.conf file and adding your remote configuration file as these are dependent on the hardware you
use for your setup. However, I can give general recommendations or what I typically do.

For lirc_options.conf, the only change I make is to change the driver from devinput to default. Devinput
works fine for receiving IR, but it will not allow you to emit IR. This driver is dependent on your hardware, but LIRC
just works with most devices on this driver nowadays.

For the remote configuration file, if you’re using a common remote control, you may be able to find it in the LIRC
remote control database. Otherwise, you’ll have to create it yourself. This can be done with LIRC’s IR record utility.
However, I’ve had much better luck using a RedRat3-II and RedRat’s IR Signal Database for creating the remote
configuration file. The RedRat3-II is now discontinued, although its driver’s are still available, but you could look
into the RedRatX or see if you can find a RedRat3-II used. Place this generated remote configuration file in your
lircd.conf.d folder.

If you’re using an Iguanaworks IR Transciever, you may find the discussion below useful. Basically, the device should
just work on the default driver.

• https://github.com/iguanaworks/iguanair/issues/39

4.3.2 Windows

You’ll want to make sure you install WinLIRC at http://winlirc.sourceforge.net/. This is the LIRC port for Windows
which corresponds with version 0.9.0 of LIRC. Past that, you can run the WinLIRC executable file and select the
“Input Plugin” for your device. Then, you can select the remote configuration and click OK. You should now be able
to select your remote and send key codes. As long as the program is running in the background (it minimizes to the
tray), this package will be able to connect to it.

10 Chapter 4. Site Documentation

https://www.lirc.org/html/configuration-guide.html
http://lirc.sourceforge.net/remotes/
http://lirc.sourceforge.net/remotes/
https://www.lirc.org/html/irrecord.html
http://lircredrat3.sourceforge.net/
https://www.redrat.co.uk/software/ir-signal-database-utility/
https://www.redrat.co.uk/support/firmware-drivers/
https://www.redrat.co.uk/products/redrat-x/
https://www.ebay.com/sch/i.html?_nkw=redrat3-ii&_sacat=0
https://github.com/iguanaworks/iguanair/issues/39
http://winlirc.sourceforge.net/

LIRC Python Package, Release 1.0.0

4.3.3 macOS

On macOS, the paths are almost the same as the Linux ones, just prefixed with /opt/local/. Therefore, the
LIRC configuration is typically at /opt/local/etc/lirc/ and the lircd socket is at /opt/local/var/run/
lirc/lircd

Refer to the Linux section for the rest of the configuration as they are almost the same besides the /opt/local/
prefix. However, on macOS, there is also no default driver like there is on Linux. You’ll have to figure out what
devices will work and what driver it needs so you can input that into lirc_options.conf.

4.3.4 Example Remote Configuration File

The following is an example of a remote configuration file that would be placed inside of the lircd.conf.d/
folder. This is for a KENMORE_253-79081, remote taken from the LIRC remote database.

Please make this file available to others
by sending it to <lirc@bartelmus.de>
#
this config file was automatically generated
using lirc-0.9.0-pre1(default) on Sun Sep 7 00:53:46 2014
#
contributed by Steven Shamlian
#
brand: Kenmore
model no. of remote control: Unknown
devices being controlled by this remote: Kenmore 253.79081
#
Kernel revision: 3.12.26+
Driver/device option: --driver default --device /dev/lirc0
Capture device: Vishay TSOP6238 to Raspberry Pi GPIO pin 23
Kernel modules: lirc_rpi
Type of device controlled: Air Conditioner
Devices controlled: Kenmore 253.79081
#
Remote Layout:
#
/------------------------\
|KEY_POWER KEY_TIME|
| |
|KEY_VOLUMEUP KEY_UP|
| KEY_PLAY |
|KEY_VOLUMEDOWN KEY_DOWN|
| KEY_SAVE |
|KEY_SHUFFLE KEY_SLEEP|
| KEY_PAUSE |
\------------------------/
VOLUME keys are for fan speed
PLAY starts air conditioner
PAUSE makes unit fan-only
SAVE is Energy Saver mode
SHUFFLE is for Automatic Fan

begin remote

name KENMORE_253-79081
bits 16

(continues on next page)

4.3. Configuring System LIRC 11

http://lirc.sourceforge.net/remotes/Kenmore/Kenmore_253_79081
http://lirc.sourceforge.net/remotes

LIRC Python Package, Release 1.0.0

(continued from previous page)

flags SPACE_ENC|CONST_LENGTH
eps 30
aeps 100

header 9159 4455
one 639 1615
zero 639 486
ptrail 637
repeat 9103 2199
pre_data_bits 16
pre_data 0x10AF
gap 108066
toggle_bit_mask 0x0

begin codes
KEY_POWER 0x8877
KEY_TIME 0x609F
KEY_VOLUMEUP 0x807F
KEY_VOLUMEDOWN 0x20DF
KEY_PLAY 0x906F
KEY_UP 0x708F
KEY_DOWN 0xB04F
KEY_SAVE 0x40BF
KEY_SHUFFLE 0xF00F
KEY_SLEEP 0x00FF
KEY_PAUSE 0xE01F

end codes

end remote

4.3.5 Example LIRC Options Configuration File

This is a lirc_options.conf file, taken from /etc/lirc/lirc_options.conf on a Linux machine, to
get a feel for the configuration options offered.

These are the default options to lircd, if installed as
/etc/lirc/lirc_options.conf. See the lircd(8) and lircmd(8)
manpages for info on the different options.
#
Some tools including mode2 and irw uses values such as
driver, device, plugindir and loglevel as fallback values
in not defined elsewhere.

[lircd]
nodaemon = False
driver = default
device = auto
output = /var/run/lirc/lircd
pidfile = /var/run/lirc/lircd.pid
plugindir = /usr/lib/lirc/plugins
permission = 666
allow-simulate = No
repeat-max = 600
#effective-user =
#listen = [address:]port

(continues on next page)

12 Chapter 4. Site Documentation

LIRC Python Package, Release 1.0.0

(continued from previous page)

#connect = host[:port]
#loglevel = 6
#release = true
#release_suffix = _EVUP
#logfile = ...
#driver-options = ...

[lircmd]
uinput = False
nodaemon = False

[modinit]
code = /usr/sbin/modprobe lirc_serial
code1 = /usr/bin/setfacl -m g:lirc:rw /dev/uinput
code2 = ...

[lircd-uinput]
add-release-events = False
release-timeout = 200
release-suffix = _EVUP

4.4 Usage

Once you’ve installed the lirc python package, there will be a number of things you can now import from it to get
started.

from lirc import Client, LircdConnection

The most relevant of these is Client, since this is the main class you will be using. LircdConnection is the
object that is used to configure the connection to LIRC when you initialize the Client.

4.4.1 Initializing Lirc

The Client class takes in one optional keyword argument: connection. This connection must be a
LircdConnection. This connection, if not specified manually, will have default values that depend on the op-
erating system you are on. So the simplest way to construct Client is with no arguments at all.

from lirc import Client

lirc_client = Client()

Overriding LIRC Defaults on Initialization

However, if we the defaults don’t work for us? Let’s say we’re on Windows and we want to connect over TCP to
a remote LIRC server on another Windows machine. So we’ve passed in an address to override the default so it
doesn’t look for the daemon on the localhost. socket and timeout are passed in just to show that we can, these
are already the defaults on Windows.

4.4. Usage 13

LIRC Python Package, Release 1.0.0

import socket
from lirc import Client, LircdConnection

client = Client(
connection=LircdConnection(
address=("10.16.30.2", 8765),
socket=socket.socket(socket.AF_INET, socket.SOCK_STREAM),
timeout=5.0

)
)

LIRC Initialization Defaults per Operating System

From the options we may pass into the LircdConnection, address and socket will change depending on the
operating system you are using. The timeout always defaults to 5.0 (seconds).

On Linux, this will attempt to connect to the lircd socket at /var/run/lirc/lircd and create a socket using
AF_UNIX and SOCK_STREAM.

On macOS, it will be almost identical to Linux except that all the paths will be prefixed by /opt/local/ so the
connection to the lircd socket will instead be at /opt/local/var/run/lirc/lircd. The socket that is created
will be the same.

However if we are on Windows, we can’t use unix domain sockets. Instead, WinLIRC uses TCP to communicate with
the lirc daemon. So instead of a string for the address, it defaults to a tuple of (“localhost”, 8765), which is the default
on WinLIRC. The first part contains the address whereas the second is the port. Furthermore, the socket that is created
uses AF_INET and SOCK_STREAM instead so we can connect over TCP.

4.4.2 Sending IR Codes

In order to send IR signals with our remote, we can use the send method on the lirc.Client.

import lirc

client = lirc.Client()
client.send_once('our-remote-name', 'key-in-the-remote-file')

Using the send_once() method is quite simple. For any method, such as this one, that takes in a remote and a key,
the parameters are always in that order with the remote name first and then the key name. Because the send_once
method does not get any meaningful data back from lircd, there is no return value from it. Instead, as is the case for
most methods here that don’t have a meaningful return value, a lirc.LircdCommandFailureError is raised
if the command we sent failed.

Furthermore, we can also send the key in rapid succession. This is useful if we, say, want to go to channel 33.

client.send_once('our-remote-name', 'key_3', repeat_count=2)

4.5 API Specification

class lirc.Client(connection: lirc.connection.lircd_connection.LircdConnection = None)
Bases: object

Communicate with the lircd daemon.

14 Chapter 4. Site Documentation

LIRC Python Package, Release 1.0.0

close()→ None
Close the connection to the socket.

driver_option(key: str, value: str)→ None
Set driver-specific option named key to given value.

Parameters

• key – The key to set for the driver.

• value – The value for the key to set.

Raises LircdCommandFailure – If the command fails.

list_remote_keys(remote: str)→ List[str]
List all the keys for a specific remote.

Parameters remote – The remote to list the keys of.

Raises LircdCommandFailure – If the command fails.

Returns The list of keys from the remote.

list_remotes()→ List[str]
List all the remotes that lirc has in its lircd.conf.d folder.

Raises LircdCommandFailure – If the command fails.

Returns The list of all remotes.

send_once(remote: str, key: str, repeat_count: int = 1)→ None
Send an lircd SEND_ONCE command.

Parameters

• key – The name of the key to send.

• remote – The remote to use keys from.

• repeat_count – The number of times to press this key.

Raises LircdCommandFailure – If the command fails.

send_start(remote: str, key: str)→ None
Send an lircd SEND_START command.

This will repeat the given key until send_stop is called.

Parameters

• remote – The remote to use keys from.

• key – The name of the key to start sending.

Raises LircdCommandFailure – If the command fails.

send_stop(remote: str = ”, key: str = ”)→ None
Send an lircd SEND_STOP command.

The remote and key default to the remote and key last used with send_start if they are not specified, since
the most likely use case is sending a send_start and then a send_stop.

Parameters

• remote – The remote to stop.

• key – The key to stop sending.

Raises LircdCommandFailure – If the command fails.

4.5. API Specification 15

LIRC Python Package, Release 1.0.0

set_transmitters(transmitters: Union[int, List[int]])→ None
Set the active transmitters.

Example

import lirc

c = lirc.Client()

c.set_transmitters(1)

c.set_transmitters([1,3,5])

Parameters transmitters – The transmitters to set active.

Raises LircdCommandFailure – If the command fails.

simulate(remote: str, key: str, repeat_count: int = 1, keycode: int = 0)→ None
Simulate an IR event.

The –allow-simulate command line option to lircd must be active for this command not to fail.

Example Format: <code> <repeat count> <button name> <remote control name>

Such as: 0000000000f40bf0 00 KEY_UP ANIMAX

Parameters

• remote – The remote to simulate key presses from.

• key – The key on the remote to simulate.

• repeat_count – The number of times to simulate the key press.

• keycode – lircd(8) describes this option as a 16 hexadecimal digit number encoding of
the IR signal. However, it says it is depreciated and should be ignored.

Raises LircdCommandFailure – If the command fails.

start_logging(path: Union[str, pathlib.Path])→ None
Send a lircd SET_INPUTLOG command which sets the path to log all lircd received data to.

Parameters path – The path to start logging lircd recieved data to.

Raises LircdCommandFailure – If the command fails.

stop_logging()→ None
Stop logging to the inputlog path from start_logging.

Raises LircdCommandFailure – If the command fails.

version()→ str
Retrieve the version of LIRC

Raises LircdCommandFailure – If the command fails.

Returns The version of LIRC being used.

class lirc.LircdConnection(address: Union[str, tuple] = None, socket: socket.socket = None, time-
out: float = 5.0)

Bases: lirc.connection.abstract_connection.AbstractConnection

address
Retrieve the address that this lircd connection is connected to.

16 Chapter 4. Site Documentation

LIRC Python Package, Release 1.0.0

Returns The current address being used.

close()
Closes the socket connection.

connect()
Connect to the socket at the address both specified on init.

Raises LircdConnectionError – If the address is invalid or lircd is not running.

readline()→ str
Read a line of data from the lircd socket.

We read 4096 bytes at a time as the buffer size. Therefore after data is read from the socket, all the lines
are stored in a buffer if there is more than 1 and subsequent calls grab a line that stored in that buffer until
it is empty. Then, another call to the socket would be made.

Raises

• TimeoutError – If we are not able to grab data from the socket in a specified amount
of time (the initial timeout time on initialization).

• LircdSocketError – If some other error happened when trying to read from the
socket.

Returns A line from the lircd socket.

send(data: str)
Send a commend to the lircd socket connection.

Parameters data – The data to send to the lircd socket.

Raises TypeError – if data is not a string.

4.6 Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

4.6.1 1.0.0 - 2020-12-26

Added

• DefaultConnection.address and DefaultConnection.socket may raises an
UnsupportedOperatingSystemError if the operating system you’re on is not MacOS, Linux, or
Windows.

Changed

• lirc.Client raises a TypeError instead of a ValueError now if a connection is passed in that is
not an instance of LircdConnection.

• send on lirc.Client is now called send_once.

• start_repeat on lirc.Client is now called send_start.

• stop_repeat on lirc.Client is now called send_stop.

Removed

• socket property from LircdConnection.

4.6. Changelog 17

https://keepachangelog.com/en/1.0.0/
https://semver.org/spec/v2.0.0.html

LIRC Python Package, Release 1.0.0

Fixed

• The remote and key optional arguments to the lirc.Client’s stop_repeat method were not overrid-
ing the last sent remote and key.

4.6.2 0.2.0 - 2020-12-13

Added

• LircdConnection to handle configuring the connection on Client.

Changed

• Lirc is now named Client.

• Client now takes in a connection as the optional argument to configure it’s connection. That
connection must be a LircdConnection class if you would like to customize the connection. The
LircdConnection takes in an address, socket, and timeout with optional keyword arguments. Any-
thing not specified with use the defaults for that operating system.

Removed

• DEFAULT_SOCKET_PATH constant on Client. It no longer makes sense with cross-platform support.

• ENCODING constant on Client.

• socket_path and socket_timeout on the Lirc constructor.

4.6.3 0.1.0 - 2020-07-13

• Initial Release

4.7 Contributor Covenant Code of Conduct

4.7.1 Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making
participation in our project and our community a harassment-free experience for everyone, regardless of age, body size,
disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic
status, nationality, personal appearance, race, religion, or sexual identity and orientation.

4.7.2 Our Standards

Examples of behavior that contributes to creating a positive environment include:

• Using welcoming and inclusive language

• Being respectful of differing viewpoints and experiences

• Gracefully accepting constructive criticism

• Focusing on what is best for the community

• Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

18 Chapter 4. Site Documentation

LIRC Python Package, Release 1.0.0

• The use of sexualized language or imagery and unwelcome sexual attention or advances

• Trolling, insulting/derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or electronic address, without explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

4.7.3 Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appro-
priate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

4.7.4 Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the
project or its community. Examples of representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed representative at an online or offline
event. Representation of a project may be further defined and clarified by project maintainers.

4.7.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team
at eugenetriguba@gmail.com. All complaints will be reviewed and investigated and will result in a response that is
deemed necessary and appropriate to the circumstances. The project team is obligated to maintain confidentiality with
regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent
repercussions as determined by other members of the project’s leadership.

4.7.6 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 1.4, available at https://www.
contributor-covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see https://www.contributor-covenant.org/faq

4.8 MIT License

Copyright (c) 2020 Eugene Triguba

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

4.8. MIT License 19

mailto:eugenetriguba@gmail.com
https://www.contributor-covenant.org
https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
https://www.contributor-covenant.org/faq

LIRC Python Package, Release 1.0.0

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

4.9 Contributing Guidelines

Thank you for your interest! If you find a bug, want to suggest an improvement, or any other change, please open
a issue first. This ensures your time is not wasted if you were planning on creating a pull request, but the changes
suggested do not work for this project.

4.9.1 General Guidelines

Commit history:

• Try to keep a clean commit history so it is easier to see your changes. Keep functional changes and
refactorings in separate commits.

Commit messages:

• Have a short one line summary of your change followed by as many paragraphs of explanation as
you need. This is the place to clarify any subtleties you have in your implementation, document
other approaches you tried that didn’t end up working, any limitations on your implementation, etc.
The most important part here is to describe why you made the change you did, not simply what the
change you made is.

Changelog:

• Please ensure to update the changelog by adding a new bullet under an Added, Changed, Deprecated,
Removed, Fixed, or Security section headers under the Unreleased version. If any of those sections
are not present, feel free to add the one you need. See Keep a Changelog if you need guidance on
what makes a good entry since this project follows those principles.

Tests:

• Ensure the tests pass: poetry run task test to run all tests.

• For any significant code changes, there must be tests to accompany them. All unit tests are written
with pytest.

Code Format:

• There is a pre-commit pipeline to ensure a standard code format. Make sure to install the pre-commit
hooks before making any commits with pre-commit install.

CI Pipeline:

• There is a CI pipeline that is run using Github Actions on commits to master, dev, and on pull
requests. This pipeline must pass for your changes to be accepted.

20 Chapter 4. Site Documentation

LIRC Python Package, Release 1.0.0

4.9.2 Getting Up & Running

This project uses Poetry for the build system and dependency management. To get started, you will want that installed
on your system.

Once you’ve installed Poetry, you can install the dependencies, this package, and go into the virtual environment.

$ poetry install
$ poetry shell

From inside the virtual environment, we can work with the package and easily run the tasks for this project such as
task test and task lint that are in the pyproject.toml file.

4.9. Contributing Guidelines 21

https://python-poetry.org

LIRC Python Package, Release 1.0.0

22 Chapter 4. Site Documentation

CHAPTER 5

Indices and tables

• genindex

• search

23

LIRC Python Package, Release 1.0.0

24 Chapter 5. Indices and tables

Python Module Index

l
lirc, 14

25

LIRC Python Package, Release 1.0.0

26 Python Module Index

Index

A
address (lirc.LircdConnection attribute), 16

C
Client (class in lirc), 14
close() (lirc.Client method), 14
close() (lirc.LircdConnection method), 17
connect() (lirc.LircdConnection method), 17

D
driver_option() (lirc.Client method), 15

L
lirc (module), 14
LircdConnection (class in lirc), 16
list_remote_keys() (lirc.Client method), 15
list_remotes() (lirc.Client method), 15

R
readline() (lirc.LircdConnection method), 17

S
send() (lirc.LircdConnection method), 17
send_once() (lirc.Client method), 15
send_start() (lirc.Client method), 15
send_stop() (lirc.Client method), 15
set_transmitters() (lirc.Client method), 15
simulate() (lirc.Client method), 16
start_logging() (lirc.Client method), 16
stop_logging() (lirc.Client method), 16

V
version() (lirc.Client method), 16

27

	Installation
	Usage Quick Start
	Customizing the Client
	Sending IR
	Handling Errors

	Further Documentation
	Site Documentation
	Installing the LIRC Python & System Package
	Hardware Setup
	Configuring System LIRC
	Usage
	API Specification
	Changelog
	Contributor Covenant Code of Conduct
	MIT License
	Contributing Guidelines

	Indices and tables
	Python Module Index
	Index

